

GOVERNMENT OF TAMILNADU

DIRECTORATE OF TECHNICAL EDUCATION

DIPLOMA IN ENGINEERING I YEAR

SEMESTER SYSTEM

L - SCHEME

2011 - 2012

I SEMESTER

ENGINEERING CHEMISTRY - I

CURRICULUM DEVELOPMENT CENTER

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING - SYLLABUS L-SCHEME

(Implements from the Academic Year 2011-2012 on wards)

- Course Name : All Branches of Diploma in Engineering and Technology and Special Programmes except DMOP, HMCT and Film & TV
- Subject Code : 21005
- Semester : I Semester
- Subject Title : ENGINEERING CHEMISTRY I

TEACHING AND SCHEME OF EXAMINATION:

No. of Weeks per Semester: 16 Weeks

	Instructions		Examination					
	Hours/ Hours/ Week Semester							
Subject			Internal assessment			Duration		
ENGINEERING CHEMISTRY-I	5 Hours	80 Hours	25	75	100	3 Hours		

Topics and Allocation of Hours:

SI. No	Topics	Time (Hours)		
Unit-I	Molecular Mass and Equivalent Mass, Acids and	14 Hours		
	Bases, Chemical Bonding			
Unit-II	Solution, Technology of water and Solid state	14 Hours		
Unit-III	Colloids and Nano particles, Photochemistry	14 Hours		
Unit-IV	Electrochemistry, cell and Batteries	14 Hours		
Unit-V	Corrosion Engineering	14 Hours		
	Revision and Examinations	10 Hours		
	Total	80 Hours		

Rationale:

The Subject Engineering Chemistry creates foundation for understanding basic concepts of chemistry and its effects on Engineering Materials. Engineering Chemistry also impart knowledge of properties of materials and protecting them from corrosion and selecting right types of Materials used in various fields of Engineering and Industry.

Objectives:

The objective of this Course is to make the student:

- 1. Study about the importance of Engineering Chemistry in industry.
- 2. Know about Mole concepts and equivalence, Acids and bases and chemical bonds.
- 3. Learn about solutions, hardness of water, and solid states.
- 4. Know about Colloidal particles, Nano particles, Photochemistry and light reactions.
- 5. Explain the details of electrochemistry and batteries.
- 6. Understand Corrosion and preventive methods.

Learning Structure

Application	Apply the kno for engineerin and bonding corrosion.	ng pui	rposes bas	ed oi	n their	[·] struc	tu	re, size of	par	ticles	
Procedure	Defining Molecule, Molecular formula, Equivalent mass and Explaining Acidic and Basic nature of matter and chemical bondns.		Defining methods of Expressing concentration of solutions. Estimation and softening of Hardness of water and Nature of solids.		Explaining types of colloids and applications of Nano particles, reactions involving light on materials.		Defining of Electrolytes Electrolysis And applications Of cell and Batteries		Explaining Corrosion and theories of corrosion and Methods of control		
Concepts	Understa nding Mole concept, Acidic and basic behaviour of materials. Nature of bonding.	Methods of expressing concentration of solutions ic and softening ur of Hardness of water. Nature s. of Solid states.		prop appli collo parti effeo	Understanding properties and applications of colloids, nano particles and effects of light on materials.		Properties of Materials and their application		Me co ste co Pre	Understanding Methods of corrosion and steps to control or Prevent corrosion.	
Facts	Mole Concept, Equivalent mass, Acids & Bases, Chemical Bonding.	sour hard wate meth And	tions, Water ces, ness of r softening nods, solid state aterials.	so na pa stu rea	rticles, Idy of actions volving	s, ,		Electro Chemistry Cell & Storage Batteries	m	orrosion and ethods of evention.	

DETAILED SYLLABUS

CONTENT

Unit No.	Name of the Topic	Hours	Marks
	1.1. Molecular Mass-4 HoursMolecule-Molecular formula-Molecular Mass-Mole-Definition-Simplecalculations-Avogadro'sHypothesis-Application-RelationshipbetweenMolecularMassandVapourDensity.GramMolecularVolume-Definition-Avogadro's Number-Definition-Simple Problems2 HoursL2. Equivalent MassCramEquivalent Mass-Definition-Determination of Equivalent Mass by Oxide Method (DirectMethod)-Simple Problems.1.3. Acids and Bases:-5 Hours-5 HoursTheories of Acids and bases-ArrheniusTheory - Lowry-Bronsted Theory - Lewis theory - Advantages of Lewis theory.Definition - Acid-Base concept of Indicators (Basic ideas) -Buffer solution- definition-types and examples.Application ofpH in industries-Electronic Concept of Oxidation andReduction- Definition- Example3 HoursDefinition-lonic bonding-Formation ofNaCl - Covalentbonding- formation of NH3 - Coordinate bonding- formation ofNH41* ion - Metallic bonding - Electron sea model.	14	15
II	TECHNOLOGY OF WATER, CHEMICAL BONDING ANDSOLID STATE-4 Hours2.1. Solution-4 HoursDefinition- Methods of Expressing Concentration of a Solution: Molarity, Molality, Normality, Mole fraction, Percentage, Mass- Simple Problems.2.2. Technology of Water-7 hoursSources-depletion of underground water-reasons-rainwater harvesting. (Basic ideas)-advantages-hard and soft water- carbonate, non -carbonate hardness-methods of expressing hardness by EDTA method-problems involving total, carbonate, non-carbonate hardness in ppm-softening of hard water ion- Exchange method, Reverse Osmosis method - standards of drinking water-Municipal water supply- purification (sedimentation, filtration and sterilization)- Disadvantages of hard water in boilers -Scale formation, Corrosion of boiler metal, Caustic Embrittlement - Priming and Foaming	14	15

Unit No.	Name of the Topic	Hours	Marks
11	2.3. Solid state: - 3 Hours Structure of Solids- Definition and examples for ionic, Molecular, Covalent and Metallic solids- Unit cell- bcc, fcc and hcp packing of metals –examples and properties reflected by the packing of atoms. (no numerical problems		
111	 3.1. Colloids - 5 Hours Definition- sols-True solution and Colloidal solution- differences-Types- Lyophilic & Lyophobic sols- Differences Properties- Tyndall effect, Brownian movement, Electrophoresis, Coagulation – Industrial applications- Smoke Precipitation - Cottrell's method, Purification of water, Cleaning action of soap, tanning of leather and sewage disposal. 3.2. Nano-Particles - 2 Hours Definition- Area of application - Medicine, Electronics and biomaterials. 3.3. Photochemistry - 7 Hours Introduction-Important terms- charge transfer, electronic energy migration, emission, Excited state, Frequency, Ground state, Fluorescence, Phosphorescence, Chemiluminescence - photo electric cell- photo emission cell- photo synthesis- general chemical reactions-chlorophyll and accessory pigments-Mechanism of light reactions-Dark reaction- photosynthesis and acid rain. 	14	15
IV	ELECTRO CHEMISTRY, CELL AND BATTERIES 4.1. Electro Chemistry: -5 Hours Electrolytes- Strong and weak electrolytes-Definition- examples. Electrolysis- Definition- Mechanism- Industrial applications of electrolysis –electro-plating - Preparation of surface- factors affecting the stability of the coating - Chrome plating - electro less plating Definition- advantages over electroplating- applications 4.2. Cell: -4 Hours Electro chemical cell- Single electrode potential- Galvanic cell- Formation - Daniel cell. Electrochemical series- Concentration Cell. 4.3. Storage Batteries: -5 Hours Primary, Secondary and fuel batteries. Primary battery - definition and example - Dry cell- construction and working. Secondary battery-definition- example- Lead acid storage cell -construction and working. Nickel/Cadmium battery - construction and working. Fuel cell- definition example H ₂ /O ₂ fuel cell [green fuel cell] - solar cells	14	15

Unit No.	Name of the Topic	Hours	Marks
V	Corrosion Engineering5.1. Corrosion- 4 HoursDefinition- types - Theories of corrosion- Galvanic cellFormation theory- Differential aeration theory Factorsinfluencing rate of corrosion.5.2. Methods of prevention of Corrosion- 5 HoursControl of Environment, Alloying, Surface coating- Metalcoating- Electroplating, Galvanization and Tinning- Inorganiccoating- Anodizing and Phosphating- Cathodic protectionSacrificial anode and Impressed voltage methods.5.3. Organic coating:Paints-definition- components of paints and their functions-Varnish-Definition-types-Preparation of oil varnish-Differencebetween paint & varnish-Special paints- Luminescent, heatresistant, fire retardant, Anti-fouling paints - cement paint,aluminium paint & distemper. Dyes-Acid dyes-basic dyes -Mordant dyes -Definition only (No equations).	14	15

Text Books:

- 1. Engineering Chemistry- Jain & Jain Dhanpat rai & Sons 2005
- 2. A Textbook of Engineering Chemistry- S. S. Dara, S. Chand & Company Ltd. 1996

Reference Books:

- 1. A Text book of Environmental Chemistry and Pollution Control S.S.Dara, S. Chand & Company Ltd. 2007
- 2. Engineering Chemistry Uppal- Khanna Publishers. 1986
- 3. Higher Secondary +2 Chemistry Vol. I & II Tamil Nadu Textbook Corporation, Chennai. 2005
- 4. Environmental chemistry VP KUDESIA-PRAGATI PRAKASHAN

* * *

ENGINEERING CHEMISTRY - I MODEL QUESTION PAPER -1

Time: 3 Hrs

PART A

I. Answer Any Fifteen Questions: -

[15x1=15]

Max. Marks: 75

All Questions carry equal marks

- 1. What is Mole.
- 2. Define pOH.
- 3. Define Lewis acid.
- 4. Define ionic bond.
- 5. Define Normality.
- 6. What salts are present in temporary hard water?
- 7. What is the expansion of EDTA?
- 8. Given an example for Covalent solid.
- 9. What is the dispersion medium is starch solution?
- 10. What are the types of Colloids?
- 11. Define Photosynthesis.
- 12. Define Phosphorescence.
- 13. What type of reaction takes place at anode during corrosion of iron?
- 14. Mention the factors affecting stability of Coating.
- 15. Give an example for fuel cell.
- 16. What is the anode and electrolyte used in chrome plating?
- 17. What is dry Corrosion?
- 18. Mention any two factors connected with metal surface influencing rate of corrosion.
- 19. Give two examples for Sacrificial anodes.
- 20. What are dyes?

PART-B

II. Answer any Two Sub divisions in each of the following questions:- [5x12=60] All Questions carry equal marks

- 1. a) Derive the relation between Molecular Mass and vapour density.
 - b) Describe determination of Equivalent Mass of a metal by Oxide method.
 - c) Define and Explain the Lewis Concept of Acid and base.
- 2. a) How will you estimate the total hardness of a sample of water by EDTA method?.
 - b) Explain bcc and fcc packing with suitable example.
 - c) Explain ion change process of softening hard water?
- 3. a) Explain mechanical and optical properties of Colloids.
 - b) Distinguish between Lyophobic and Lyophilic colloids.
 - c) Write notes on Mechanism of Light and Dark reactions.
- 4. a) Explain electrolysis with a suitable example.
 - b) What is electro less plating? Explain with a suitable example.
 - c) Describe a Lead-acid storage cell with a neat diagram.
- 5. a) Explain the formation of concentration cell.
 - b) Explain Galvanic cell formation of theory of Corrosion.
 - c) What is galvanization? How is it carried out?

* * *

ENGINEERING CHEMISTRY - I MODEL QUESTION PAPER - 2

Time: 3 hours

<u> Part – A</u>

Max. Marks:75

I. Answer any 15 questions

(15 x 1 =15)

All Questions carry equal marks

- 1. What is the value of Avogadro's Number.
- 2. What is the mass of 1 mole of Sulphuric Acid.
- 3. Define pH.
- 4. What is an acidic buffer?
- 5. What is one normal Solution?
- 6. Define hard water.
- 7. Mention any two disadvantages of hard water in boilers.
- 8. Mention the names of different types of solids.
- 9. What are the types of colloids?
- 10. What are called nano particles?
- 11. What is Tyndall Effect?
- 12. What is Fluorescence?
- 13. Define Electrolysis.
- 14. Define electroless plating.
- 15. What are the types of batteries?
- 16. What is meant by electrochemical series?
- 17. Define corrosion.
- 18. Mention the names of methods used for prevention of corrosion.
- 19. Define Galvanization.
- 20. Give two examples of acid dyes.

Part – B

II. Answer any two subdivisions in each of the following questions:(5 x 12=60)

All Questions carry equal marks

- 1. a) Explain Lowry-Bronsted theory of acids and bases.
 - b) Calculate the [H+] ion concentration of a solution whose pH is 4.3.
 - c) Explain Electron-Sea model of metallic bonding
- a) Define Molality. Calculate the molality of a solution containing 2 gms of NaOH dissolved in 500gms of water.
 - b) Explain the reverse osmosis method for softening of hard water.
 - c) Write a note on covalent solids with suitable examples.
- a) Define colloids. What are the differences between a colloidal solution and a true solution?
 - b) Write notes on Electrophoresis and Brownian movement.
 - c) Explain Photosynthesis.
- 4. a) Explain chromeplating.
 - b) Explain the construction and working of a Daniel cell.
 - c) What is a Fuel cell? Write a note on H_2/O_2 Fuel cell.
- 5. a) What are the factors influencing the rate of corrosion? Explain any two factors.
 - b) Explain Cathodic protection method of preventing corrosion.
 - c) What are varnishes? Explain the preparation of oil varnish.

* * *