ANNEXURE

STATE BOARD OF TECHNICAL EDUCATION & TRAINING, TAMILNADU DIPLOMA IN ENGINEERING / TECHNOLOGY SYLLABUS M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name :All branches of Diploma in Engineering and Technology and Special

Programmes except DMOP, HMCT and film & TV.

Subject Code : 30026

Semester : II Semester

Subject Title : ENGINEERING GRAPHICS – II

TEACHING AND SCHEME OF EXAMINATION

No. of weeks per semester: 15 weeks

Subject	Inst	ructions				
	Hours / Week	Hours / Semester	Marks			
ENGINEERING			Internal	Board	Total	Duration
GRAPHICS - II	6 90	00	Assessment	Examination		
		25	75	100	3 Hrs.	

Topics and Allocation of Hours

SI.No.	Tonico	Time
	Topics	
1	Constructions of special curves,	18 Hrs.
2	Development of surfaces	21 Hrs.
3	Projection of solids, Section of Solids	27 Hrs
4	Isometric projections	24 Hrs.
	Total	90 Hrs.

RATIONALE:

Engineering graphics is a basic subject for all branches of Diploma Engineering and Technology. Since engineering drawing is considered as the language of engineers, the proper understanding and practice is required with proper instruments.

This subject is aimed at providing basic understanding of the fundamentals of Engineering Drawing; mainly visualization, graphics theory, standards & conventions of drawing, the tools of drawing and the use of Drawings in engineering applications.

The topics covered are based on the syllabus for Diploma studies in engineering. The subject is planned to include sufficient practices which would help the student in visualization of three dimensional objects and developing the drawing.

The chapters are arranged in sequence and starts from the basic concepts of constructions of special curves and polygons, proceeds to the principles of projection solids and section of solids. By the end of the subject it is expected that the students would be matured to visualize any engineering component by reading an engineering drawing.

OBJECTIVES:

At the end of the practice, the students will be able to,

- Understand the importance of drawing.
- Identify and uses of the drawing instruments.
- Acquire knowledge about the construction of special curves.
- Draw the development of solids and objects.
- Draw the projection and sectional views of solids and true shape.
- Construct orthographic views into isometric drawings.

30026 ENGINEERING GRAPHICS – II DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	1.1 Constructions of special curves	18
	Geometric curves: Definition - construction of cycloid - epicycloids – hypocycloid – exercises.	
	Involutes of a circle - Archimedean spiral – helix – exercises.	
	1.2 Construction of Polygon	
	Construct triangle, rectangle, pentagon and hexagon by side distance in	
	various positions – construction by inscribe & circumscribe a circle and by	
	angle.	
II	2.1 Development of surfaces	21
	Methods of development - Need for development - Development of regular	
	polygons: prism, cylinder, cone and pyramids. Exercises in rectangular,	
	pentagon and hexagon prisms and pyramids. Exercises in regular cylinder and cone.	
	Development of truncated prism and cylinder, frustum of pyramid and	
	cone.	
	Development of miscellaneous objects - T-pipe, elbow, ducts, tray, lamp	
	shade and funnel.	

III	3.1 Projection of solids	27
	Introduction - important terms - classification of solids - polyhedron -	
	solids of revolution – exercises in triangular and hexagonal prisms - triangular and hexagonal pyramids - cylinder and cone.	
	Projections of solids in simple positions – Axis parallel to one plane and	
	perpendicular to other plane - axis inclined to one plane and parallel to	
	other plane - axis parallel to both planes - exercises.	
	2.0 Coation of Calida	
	3.2 Section of Solids	
	Introduction – terminology - true shape - sectional view - need for sectional	
	view - cutting plane – section lines - triangular and hexagonal prisms and pyramids - cylinder and cone.	
	Position of solids – Axis parallel to one plane and perpendicular to other plane - axis parallel to both planes - exercises.	
	Position of cutting planes – cutting plane perpendicular to one plane and	
	parallel to another plane - cutting plane perpendicular to one plane and	
	inclined to another plane – exercises.	
IV	4.1 Isometric projections	24
	Introduction – isometric view - isometric projection – methods of drawing	
	an isometric view - box method - isometric view of regular solids -	
	isometric view of truncated solids - Isometric view of arcs and circles - four	
	centre method for drawing an ellipse - arcs of circles in isometric view.	
	Isometric view of the machine parts from the given simple orthographic	
	view - exercises.	

Text Books

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 50th Edition, 2010.
- 2. Gill P.S., "Engineering drawing", S.K.Kataria & Sons.

Reference Books

- 1. Gopalakrishnan.K.R., "Engineering Drawing", (Vol.I and Vol.II), Dhanalakshmi publishers, Edition 2, 1970
- 2. Venugopal.K, Sreekanjana G, "Engineering Graphics" New Age International Publishers.
- 3. K V Nataraajan "A Text Book of Engineering Drawing"
- 4. Besant Agrawal, C M Agrawal "Engineering drawing", Tata McGraw Hill Education Private Limited.
- 5. Barkinson & Sinha, "First Year Engineering Drawing", Pitman Publishers.

Board Examination – Question pattern

Time: 3 Hrs. Max.Marks: 75

[Note: Answer all the questions in the drawing sheet only. Assume missing dimensions

suitably]

Part A

Answer all questions. Each question carries five marks.

 $3 \times 5 = 15$

Note: Three questions will be asked. (1 to 3). One question each from UNIT I, II and III.

[Construction of polygon, Development of regular polygon and Projection of solids (axis perpendicular to one plane)].

Part B

Answer any four questions. Each question carries fifteen marks.

4 X 15 = 60

Note: Six questions will be asked. Minimum one question from each unit.

			Γ AL	75	
Internal Marks					
Assignment drawings		-	10		
Test		-	10		
Attendance		-	5		
	Total	-	25		